Q1)

Consider the code { 0, 10, 01 } for a ternary (D=3) source. Justify your answers to the following questions:

- 1. Is the code instantaneous?
- 2. Is the code nonsingular?
- 3. Is the code uniquely decodable?
- Is there an instantaneous code with the same codeword lengths? If so, find an example

Q2)

Consider the code {0, 01}.

- (a) Is it instantaneous?
- (b) Is it uniquely decodable?
- (c) Is it nonsingular?

Q3)

Prove that for a discrete memoryless source with entropy H(X) there is a D-ary free code with entropy HD(X) and the code will achieve $HD(X) \le L < HD(X) + 1$ where E[L] is the expected length of the code.

Q4)

Determine which of the following codes is uniquely decodable:

- (i) {0, 10, 11}
- (ii) {0, 01, 11}
- (iii) {0, 01, 10}
- (iv) {0, 01}
- (v) {00, 01, 10, 11}
- (vi) {110, 11, 10}
- (vii) {110, 11, 100, 00, 10}

Let the random variable X have five possible outcomes $\{1, 2, 3, 4, 5\}$. Consider two distributions p(x) and q(x) on this random variable.

Symbol	p(x)	q(x)	$C_1(x)$	$C_2(x)$
1	1/2	$\frac{1}{2}$	0	0
2	$\frac{1}{4}$	$\frac{1}{8}$	10	100
3	1/8	1/8	110	101
4	$\frac{1}{16}$	1/8	1110	110
5	$\frac{1}{16}$	1/8	1111	111

- (a) Calculate H(p), H(q), D(p||q), and D(q||p).
- (b) The last two columns represent codes for the random variable. Verify that the average length of C_1 under p is equal to the entropy H(p). Thus, C_1 is optimal for p. Verify that C_2 is optimal for q.
- (c) Now assume that we use code C_2 when the distribution is p. What is the average length of the codewords. By how much does it exceed the entropy p?
- (d) What is the loss if we use code C_1 when the distribution is q?